|
ActiveTcl User Guide
|
|
|
[ Main table Of Contents | Tcllib Table Of Contents | Tcllib Index ]
math::bignum(n) 3.0 "Math"
math::bignum - Arbitrary precision integer math library for
Tcl
TABLE OF
CONTENTS
SYNOPSIS
DESCRIPTION
EXAMPLES
API
KEYWORDS
COPYRIGHT
package require Tcl ?8.4?
package require math::bignum ?3.0?
The bignum package provides arbitrary precision integer math
(also known as "big numbers") capabilities to the Tcl language. Big
numbers are internally represented at Tcl lists: this package
provides a set of procedures operating against the internal
representation in order to:
- perform math operations
- convert bignums from the internal representation to a string in
the desired radix and vice versa.
The bignum interface is opaque, so operations on bignums that
are not returned by procedures in this package (but created by
hand) may lead to unspecified behaviours. It's safe to treat
bignums as pure values, so there is no need to free a bignum, or to
duplicate it via a special operation.
This section shows some simple example. This library being just
a way to perform math operations, examples may be the simplest way
to learn how to work with it. Consult the API section of this man
page for information about individual procedures.
|
package require math::bignum
# Multiplication of two bignums
set a [::math::bignum::fromstr 88888881111111]
set b [::math::bignum::fromstr 22222220000000]
set c [::math::bignum::mul $a $b]
puts [::math::bignum::tostr $c] ; # => will output 1975308271604953086420000000
set c [::math::bignum::sqrt $c]
puts [::math::bignum::tostr $c] ; # => will output 44444440277777
# From/To string conversion in different radix
set a [::math::bignum::fromstr 1100010101010111001001111010111 2]
puts [::math::bignum::tostr $a 16] ; # => will output 62ab93d7
# Factorial example
proc fact n {
set z [::math::bignum::fromstr 1]
for {set i 2} {$i <= $n} {incr i} {
set z [::math::bignum::mul $z [::math::bignum::fromstr $i]]
}
return $z
}
puts [::math::bignum::tostr [fact 100]]
|
- ::math::bignum::fromstr string ?radix?
- Convert string into a bignum. If radix is
omitted or zero, the string is interpreted in hex if prefixed with
0x, in octal if prefixed with ox, in binary if
it's pefixed with bx, as a number in radix 10 otherwise.
If instead the radix argument is specified in the range
2-36, the string is interpreted in the given radix.
- ::math::bignum::tostr bignum ?radix?
- Convert bignum into a string representing the number
in the specified radix. If radix is omitted, the default
is 10.
- ::math::bignum::sign bignum
- Return the sign of the bignum. The procedure returns 0 if the
number is positive, 1 if it's negative.
- ::math::bignum::abs bignum
- Return the absolute value of the bignum.
- ::math::bignum::cmp a b
- Compare the two bignums a and b, returning 0 if a
== b, 1 if a > b, and -1 if
a < b.
- ::math::bignum::iszero bignum
- Return true if bignum value is zero, otherwise false
is returned.
- ::math::bignum::lt a b
- Return true if a < b, otherwise false is
returned.
- ::math::bignum::le a b
- Return true if a <= b, otherwise false is
returned.
- ::math::bignum::gt a b
- Return true if a > b, otherwise false is
returned.
- ::math::bignum::ge a b
- Return true if a >= b, otherwise false is
returned.
- ::math::bignum::eq a b
- Return true if a == b, otherwise false is
returned.
- ::math::bignum::ne a b
- Return true if a != b, otherwise false is
returned.
- ::math::bignum::isodd bignum
- Return true if bignum is odd.
- ::math::bignum::iseven bignum
- Return true if bignum is even.
- ::math::bignum::add a b
- Return the sum of the two bignums a and
b.
- ::math::bignum::sub a b
- Return the difference of the two bignums a and
b.
- ::math::bignum::mul a b
- Return the product of the two bignums a and
b. The implementation uses Karatsuba multiplication if
both the numbers are bigger than a given threshold, otherwise the
direct algorith is used.
- ::math::bignum::divqr a b
- Return a two-elements list containing as first element the
quotient of the division between the two bignums a and
b, and the remainder of the division as second
element.
- ::math::bignum::div a b
- Return the quotient of the division between the two bignums
a and b.
- ::math::bignum::rem a b
- Return the remainder of the division between the two bignums
a and b.
- ::math::bignum::mod n m
- Return n modulo m. This operation is called
modular reduction.
- ::math::bignum::pow base exp
- Return base raised to the exponent exp.
- ::math::bignum::powm base exp m
- Return base raised to the exponent exp,
modulo m. This function is often used in the field of
cryptography.
- ::math::bignum::sqrt bignum
- Return the integer part of the square root of
bignum
- ::math::bignum::rand bits
- Return a random number of at most bits bits. The
returned number is internally generated using Tcl's expr
rand() function and is not suitable where an unguessable and
cryptographically secure random number is needed.
- ::math::bignum::lshift bignum bits
- Return the result of left shifting bignum's binary
representation of bits positions on the left. This is
equivalent to multiplying by 2^bits but much faster.
- ::math::bignum::rshift bignum bits
- Return the result of right shifting bignum's binary
representation of bits positions on the right. This is
equivalent to dividing by 2^bits but much faster.
- ::math::bignum::setbit bignumVar bit
- Set the bit at bit position to 1 in the bignum stored
in the variable bignumVar. Bit 0 is the least
significant.
- ::math::bignum::clearbit bignumVar bit
- Set the bit at bit position to 0 in the bignum stored
in the variable bignumVar. Bit 0 is the least
significant.
- ::math::bignum::testbit bignum bit
- Return true if the bit at the bit position of
bignum is on, otherwise false is returned. If bit
is out of range, it is considered as set to zero.
- ::math::bignum::bits bignum
- Return the number of bits needed to represent bignum in radix
2.
bignums , math , multiprecision , tcl
Copyright © 2004 Salvatore Sanfilippo <antirez at invece
dot org>
Copyright © 2004 Arjen Markus <arjenmarkus at users dot
sourceforge dot net>