EDOC224
Mi d a s
Graphics Support Library
Edition 3.2

September 1998
Nuclear Physics Support Group

Central Laboratory of the Research Councils

Daresbury Laboratory
TK Support Library
This document describes a Support Library (SL) of TCL procedures which can be used to create a graphical interface (GUI) for a TCL application.

The procedure interface is based very strongly on the Xview interface (xv) originally created by David Brightly and used for the creation of the GUI used by Eurogam. This support library was initially created with the view to ease the transition of the Eurogam GUI from use of Xview (and thus dependence on Sun MicroSystems) to the use of the platform independent package TK which generates a Motif compliant look and feel while requiring only X11 support from the Unix system it is running in. The use of the Support Library however makes generation of a GUI using TK very much quicker and easier than direct use of the “raw” TK commands and thus its use has many advantages other than in its original role of conversion of existing Eurogam applications.

Throughout this document the word widget is used to mean a graphical construction created by one of the SL procedures. A widget consists of a TK frame window holding a number of TK windows. The fact that a widget is a composite of elemental TK windows is one of the reasons why using the SL procedures makes generation of GUIs quicker and easier. In all cases several TK commands are required to implement the creation of a widget. By convention widget names are in upper case. While use of this convention is not essential when using most of the SL procedures it is assumed by the call-back mechanism and the click procedure.

The SL procedures require that a procedure named click is supplied to handled all call backs from the widgets created for which a TCL procedure to be invoked is not supplied when the widget is created. The click procedure has a single argument which is a TCL list. The list elements are

index 0

frame name containing the widget

index 1

command

index 2

the widget name

index 3

value

index 4

index

The contents of command and value are dependent on the widget type. command is used mostly for special purposes - for example if a window is QUIT via the window manager then the application is informed by invoking the click procedure with command having the value :quit. The value and index elements are not present for all widget types.

Where a TCL procedure to be invoked when an event occurs is supplied to the widget creation procedure then the procedure is invoked during the call back with a single list argument as above but omitting the first 3 items. This may mean (for example the button widget) that there is no argument .

The library contains a default version of the click procedure which is described later in this document.

widget creation procedures

All widget creation procedures have the same format:

procedure-name
widget-name [argument keyword value]

There may be a variable number of keyword/value pairs (including none).

For further details of argument values the man pages for TK should be consulted.

procedure

:frame

name

Creates the primary frame for a TCL interpreter or a secondary top level frame for the interpreter.
name is used to generate the path name of the window to be created. It may have either the format of a widget name (e.g. :frame SYS) or the format required by TK for a path name (e.g. :frame .sys).

If the supplied frame name does not start with a period it is assumed to be a widget name. The name will be lower-cased (using the string tolower command) and a period prefixed. If the name thus generated is the same as the name returned by the self frame-name command (see common.tcl) then it is assumed that this is the primary frame for the interpreter (see also the :toplevel argument following).

The conditions for this to be the primary frame will be met if name is the same as the global TCL variable frame.

bindings

A number of bindings are made by default by the :frame procedure.

(1)
 when the window manager delete window event is generated (normally by the frame being Quit by the user) then the TCL command

click NAME :quit

will be executed where NAME is the widget name generated from name.

(2)
If the frame being created is the primary frame for the interpreter then a binding is made applicable to all windows in the interpreter for the keyboard sequence Ctrl+Alt+Delete to the sequence required to orderly finish and destroy the entire application. Since interpreters are automatically created as necessary if they do not exist when invoked this is a convenient way of causing a specific interpreter to be reloaded. The sequences Ctrl+Delete and Alt+Delete may also be used which is particularly of use when using terminals for which the full sequence has more dramatic effects.

(3)
If the frame being created is the primary frame for the interpreter then bindings are made applicable to all windows in the interpreter for the keyboard sequences F1 , Shift+F1 and Alt+F1. These invoke features in the online Help system. For further details see the section later in this document which describes the Help system.

(4)
For frames created with the parameter :transient T a binding is made such that the window is destroyed when an Unmap event occurs (normally by the frame being Closed by the user).

(5)
A binding is made such that if button 1 is pressed while positioned over the frame footer area (if :show-footer T) then the footer is cleared.

(6)
A binding is made such that if button 3 is pressed while positioned over the frame footer area (if :show-footer T) then the frame busy indicator is cleared.

(7)
For frames (other than those created with the parameter :transient T) a binding is made such that when an Unmap event occurs the global variable WMapState is set to 0 and the procedure click-unmap is invoked if it exists.

(8)
For frames (other than those created with the parameter :transient T) a binding is made such that when a Map event occurs the global variable WMapState is set to 1 and the procedure click-map is invoked if it exists.

(9)
For frames (other than those created with the parameter :transient T) a binding is made such that when a Visibility event occurs the procedure click-visibility is invoked if it exists.

(10)
If the frame being created is the primary frame for the interpreter then bindings are made applicable to all windows in the interpreter for the keyboard sequence Shift+F2. This starts a dialogue which enables the TCL source files used by the interpreter to be displayed.

arguments
The :frame procedure may have a number of arguments however none of these is mandatory.

:label

string

string is used as the title of the window and will appear centered in the top bar of the window bounding box.

e.g.
:label “System Control”

The default value for the :label argument is “name frame”.

:icon-name

string

string is used as the title of the icon for the window.

e.g
:icon-name “SysCntl”

The default value for the :icon-name argument is “name”.

:icon-image

string

string is the name of a file which should contain a X bit map to be used as the icon for the window.

e.g
:icon-image “@/MIDAS/tcl/bitmaps/egarray”

The default value for the :icon-image argument is “@$env(ICONHOME)/default”.

:w

number

number is the width of the window in pixels.

e.g
:w 600

:h

number

number is the height of the window in pixels.

e.g.
:h 400

The :w and :h parameters may be omitted in which case the packer geometry manager will be used and the size of the window will be determined by its contents. If however the :w and :h parameters are supplied then the placer geometry manager will be used by default for this window.

:toplevel

T|F

If the value of this argument is T (true) then the window is created using the TK toplevel command otherwise it is created using the TK frame command.

By default (if this argument is not supplied) the frame command is used if the name supplied for the frame is the same as the value returned by the self frame-name command (the global variable frame) otherwise the toplevel command is used.

:transient

T

If the value of this argument is T (true) then the window is taken to only have a short term existence. A binding is made for the window which causes it to be removed from the screen (destroyed) if the window is closed (unmapped). A global variable is created by taking the last component of the window name and appending the string visible. (i.e. the name .tape.ss would create the variable ssvisible. This variable has the value 1 when the transient window is created and the value 0 when it is destroyed.

The default value for this option is F (false). A transient window is never iconized.

:show-footer
T

If the value of this argument is T (true) then a footer is created for this window.. The footer occupies an area of one character height at the bottom of the window. The footer is described in more detail later in this document.

The default is that no footer is created

:resize

F

If the value of this argument is F (false) then the window created may not be resized. The initial size of the window is determined by the geometry manager (if packing is used) or by the :w and :h parameter values if specified and placing is used.

By default windows may be resized using the mouse

:closed

T

If the value of this argument is T (true) then the window is created and iconified.

By default windows are created open.

:pack

T

If the value of this argument is T (true) then the packer geometry manager is used to position the footer (if it exists) at the bottom left hand corner of the window.

:place

T

If the value of this argument is T (true) then the placer geometry manager is used to position the footer (if it exists) at the bottom left hand corner of the window.

If neither the :pack nor :place arguments are specified then the choice of geometry manager is determined by the presence (place) or absence (pack) of the :w and :h arguments.

procedure

:panel

name

Creates a secondary frame within the current top level frame for the TCL interpreter.
name is used to generate the path name of the window to be created. It should have the format of a widget name (e.g. :panel P) and should be unique within this interpreter. The name will be lower-cased (using the string tolower command) in order to generate the path name used to create the window.

The path name generated has the form .framename.panelname.
The :panel procedure may have a number of arguments however none of these is mandatory.

arguments

:x

number

number is the x-co-ordinate within the current frame of the panel window in pixels

e.g.
:x 400

:y

number

number is the y-co-ordinate within the current frame of the panel window in pixels

e.g.
:y 200

The :x and :y parameters may be omitted in which case the packer geometry manager will be used and the position of the window will be determined by the contents of the master (frame) window. If however the :x and :y parameters are supplied then the placer geometry manager will be used to position the window within the master (frame) window.

Warning:
Note that it is not possible to mix use of the packer and placer geometry managers within the same window. Thus all panels must request or imply that the same geometry manager is used.

:w

number

number is the width of the window in pixels.

e.g.
:w 200

:h

number

number is the height of the window in pixels.

e.g.
:h 60

The :w and :h parameters may be omitted in which case the size of the window will be determined by its contents. If however the :w and :h parameters are supplied then these will be used to configure the panel window.

:anchor

where

where should be a valid window point to be used when placing or packing the panel window within the frame window. The parameter supplied is made the default to be used for any windows created within the panel.

Valid points are n,s,e,w,nw,ne,se,sw The default anchor point is nw.

:layout

L|H|T|V|R|B

Determines which side of the master (frame) this panel window should be packed. L and H pack to side left; T and V pack to side top; R packs to side right and B packs to side bottom. If R (right) is specified then the anchor point is set to ne by default. The layout parameter is used for the panel window only if the window is to be packed within the frame. That is only if :x and :y are not specified. However the parameter supplied is made the default to be used for any windows created within the panel.

The default is that layout left is used

:expand

option

option should be any valid value for the -expand configuration option to be used by the packer geometry manager. The parameter supplied is made the default to be used for any windows created within the panel.

The default is the expand yes is used.

:fill

option

option should be any valid value for the -fill configuration option to be used by the packer geometry manager. The parameter supplied is made the default to be used for any windows created within the panel.

The default is the fill both is used.

:ipadx

value

value should be any valid value for the -ipadx configuration option to be used by the packer geometry manager. The parameter supplied is made the default to be used for any windows created within the panel.

The default is the ipadx 0 is used.

:ipady

value

value should be any valid value for the -ipady configuration option to be used by the packer geometry manager. The parameter supplied is made the default to be used for any windows created within the panel.

The default is the ipady 0 is used.

:padx

value

value should be any valid value for the -padx configuration option to be used by the packer geometry manager. The parameter supplied is made the default to be used for any windows created within the panel.

The default is the padx 0 is used.

:pady

value

value should be any valid value for the -pady configuration option to be used by the packer geometry manager. The parameter supplied is made the default to be used for any windows created within the panel.

The default is the pady 0 is used.

:row-gap

number

number is the additional space (in pixels) to be allowed in addition to one character height between rows of windows created within the panel window (see :next-row procedure). The placer geometry manager is selected to be used for all widgets created within the panel window.
By default row-gap is set to 0 and the geometry manager selected is the packer

:col-gap

number

number is the additional space (in pixels) to be allowed in addition to one character width between columns of windows created within the panel window (see :next-col procedure). The placer geometry manager is selected to be used for all widgets created within the panel window.

By default col-gap is set to 0 and the geometry manager selected is the packer.

See also common procedure arguments defined later in this document.

procedure

:button

name

Creates a button widget within the current panel frame for the TCL interpreter.
name is used to generate the path name of the window to be created. It should have the format of a widget name (e.g. :button BUT) and should be unique within this interpreter. The name will be lower-cased (using the string tolower command) in order to generate the path name used to create the window.

When the button is selected using the mouse then ,if available, the TCL script supplied using the :command parameter will be executed. If this is not available the TCL command

click FRAME “ ” BUTTON
will be executed where FRAME and BUTTON are widget names.

The path name generated has the form .framename.panelname.buttonname.

The :button procedure may also be used directly within a frame window (i.e. before any panel window has been created).

The :button procedure may have a number of arguments however none of these is mandatory.

arguments

:x

number

number is the x-co-ordinate within the current panel of the button window in pixels

e.g.
:x 40

:y

number

number is the y-co-ordinate within the current panel of the button window in pixels

e.g.
:y 20

The :x and :y parameters may be omitted in which case the packer geometry manager will be used and the position of the window will be determined by the contents of the master (panel) window. If however the :x and :y parameters are supplied then the placer geometry manager will be used to position the window within the master (panel) window.

Warning:
Note that it is not possible to mix use of the packer and placer geometry managers within the same window. Thus all windows within a panel must request or imply that the same geometry manager is used.

:w

number

number is the width of the button in characters.

e.g.
:w 20

For compatibility with other widget procedures the argument :valuex is recognised and treated as equivalent to :w.

:h

number

number is the height of the button in lines of text.

e.g.
:h 2

The :w and/or :h parameters may be omitted in which case the size of the button will be determined by its contents. If however the :w and :h parameters are supplied then these will be used to configure the button window. Normally :h will not be supplied.

:label

string

label is a text string to be used to configure the button and will be displayed within the button widget.

The default is the name of the button widget. Normally the string supplied is text to be written onto the button widget. However if the string supplied starts with the character @ then it is assumed to be a bitmap file descriptor.

:padx

value

value should be any valid value for the -padx configuration option to be used by the TCL button command.

The default is that padx 0 is used.

:pady

value

value should be any valid value for the -pady configuration option to be used by the TCL button command.

The default is that pady 0 is used.

:hlt

value

value should be any valid value for the -highlightthickness configuration option to be used by the TCL button command.

The default is that hlt 1 is used.

:colour

value

value should be any valid colour specification and will be used to configure the background component of the button window. This overrides any colour selection made using the :colour command or any user colour selection.

It is recommended that this feature should be used only where important since the value supplied may be incompatible with the current user colour selection.

:command

string

string is any TCL command or commands to be executed when the button is selected.

If a command is supplied and executed in this manner then the click procedure is not invoked.

See also common procedure arguments defined later in this document.

procedure

:text

name

Creates a text widget within the current panel frame for the TCL interpreter. A text widget is a frame window containing a label window and an entry window.

name is used to generate the path name of the windows to be created. It should have the format of a widget name (e.g. :text TXT) and should be unique within this interpreter. The name will be lower-cased (using the string tolower command) in order to generate the path name used to create the windows.

When the return key is pressed while the keyboard focus is on the entry window then ,if available, the TCL script supplied using the :command parameter will be executed. If this is not available the TCL command

click FRAME “ ” TEXT text-string
will be executed where FRAME and TEXT are widget names and text-string is the information entered in the entry window.

The path names generated have the root framename.panelname.textname and the items label and entry.

The :text procedure may also be used directly within a frame window (i.e. before any panel window has been created).

Normally it is necessary when typing information into the entry window to press the return key in order to generate an event and cause the procedure linked to the entry to be executed. Often users fail to do this and so a binding is made to the mouse focus and the contents of the entry window are checked whenever the mouse focus leaves the entry window. If information is found to have been typed into the entry window which has not been seen by a return key event then an action is taken as is the return key had been pressed.
The :text procedure may have a number of arguments however none of these is manditory.

arguments

:x

number

number is the x-co-ordinate within the current panel of the text widget in pixels

e.g.
:x 40

:y

number

number is the y-co-ordinate within the current panel of the text widget in pixels

e.g.
:y 20

The :x and :y parameters may be omitted in which case the packer geometry manager will be used and the position of the window will be determined by the contents of the master (panel) window. If however the :x and :y parameters are supplied then the placer geometry manager will be used to position the window within the master (panel) window.

Warning:
Note that it is not possible to mix use of the packer and placer geometry managers within the same window. Thus all windows within a panel must request or imply that the same geometry manager is used.

:w

number

number is the width of the text entry window in characters and is also used to calculate the width of the text widget..

e.g.
:w 20

:h

number

number is the height of the text widget in pixels.

e.g.
:h 20

The :w and/or :h parameters may be omitted in which case the size of the text widget will be determined by its contents. If however the :w and :h parameters are supplied then these will be used to configure the text window. Normally :h will not be supplied.

:valuex

value

value is the position of the left hand edge of the entry window with relation to the left hand edge of the text widget. It is thus the space available to write the label string but also allows alignment of the entry windows of several text widgets. The value may be expressed in units of pixels or characters.

e.g.
:valuex 100 (pixels);
:valuex 15c (characters)

:label

string

string is a text string to be written into the label component of the text widget.

The default is the name of the button widget.

:value

string

string is a text string to be written initially into the entry component of the text widget.

The default is a null string.

:shifters

T|F

If the option T is supplied then small buttons are placed at each end of the entry widget which can be used to scroll the contents of the entry right or left in the case when the width of the contents of the entry is greater than the physical width of the entry widget.

The default is that these buttons are not drawn.

:read-only

T|F

This is an alias for :deaf supplied for compatibility with existing scripts.

:size

S|N|L

Specifies the size of the font to be used for characters in the label and entry windows. Options available are small (S); normal (N) and large (L).

The default is that size N (normal) is used.

:command

string

string is any TCL command or commands to be executed when the keyboard return key is pressed.

If a command is supplied and executed in this manner then the click procedure is not invoked.

See also common procedure arguments defined later in this document.

procedure

:list

name

Creates a list widget within the current panel frame for the TCL interpreter. A list widget is a frame window containing a scrollbar window and a listbox window.
name is used to generate the path name of the windows to be created. It should have the format of a widget name (e.g. :list LST) and should be unique within this interpreter. The name will be lower-cased (using the string tolower command) in order to generate the path name used to create the windows.

When the mouse button 1 is released while positioned over the listbox window then ,if available, the TCL script supplied using the :command parameter will be executed. If this is not available the TCL command

click FRAME :list-select LIST text-string selection
will be executed where FRAME and LIST are widget names. If the option exclusive T is active text-string is the information contained in the currently selected item of the list and selection is the index number for the currently selected item. If the option exclusive F is active text-string is a TCL list containing information for each of the currently selected items and selection is a TCL list of the index numbers for each of the currently selected items.

The path names generated have the root framename.panelname.listname and the items scroll and list.

The :list procedure may also be used directly within a frame window (i.e. before any panel window has been created).

A binding is made to the keyboard Control + P sequence which causes the contents of the listbox window to be sent to the printer. A binding is made to the keyboard Control + S sequence which causes the contents of the listbox window to be saved to file.

The :list procedure may have a number of arguments however none of these is mandatory.

arguments

:x

number

number is the x-co-ordinate within the current panel of the list widget in pixels

e.g.
:x 40

:y

number

number is the y-co-ordinate within the current panel of the list widget in pixels

e.g.
:y 20

The :x and :y parameters may be omitted in which case the packer geometry manager will be used and the position of the window will be determined by the contents of the master (panel) window. If however the :x and :y parameters are supplied then the placer geometry manager will be used to position the window within the master (panel) window.

Warning:
Note that it is not possible to mix use of the packer and placer geometry managers within the same window. Thus all windows within a panel must request or imply that the same geometry manager is used.

:w

number

number is the width of the list widget in pixels. If :w is not defined then the width of the list widget is calculated using the value supplied for :list-width.

e.g.
:w 20

:h

number

number is the height of the list widget in pixels and is also the height of the list and scroll windows.

e.g.
:h 20

:rows

number

number is the number of rows of text to be contained by the listbox window. This is used to define the height of the list widget (see :h).

:cols

number

number is the number of columns of text to be contained by the listbox window. This is used to define the width of the listbox window and is used to position the scrollbar window (see :w and :list-width).

:list-width

number

number is the width of the listbox window in pixels and is used to position the scrollbar window. It is also used to determine the width of the list widget if :w is not defined.

There are obvious interactions between :w, :h, :rows, :cols and :list-width and so it is not sensible or necessary to define all of these.

The preferred choice is to specify the size of the list using :rows and :cols since these are specified using units of characters and are thus not dependent on the font size selected.

:strings

list

list is a TCL list of text strings which are to be written into the listbox component of the list widget.

The default is that the listbox is left empty.

:exclusive

T|F

If the option T is selected then only one item at a time is selected from the list of strings defined by the :strings argument. Selecting an item from the list automatically causes any currently selected item to be deselected. If the option F is selected then any number of items from the list may be selected concurrently.

The default option is exclusive T.

:browsing

T|F

This argument is treated as an alias for :exclusive.

:see

number

Defines an element of the list which must be visible in the listbox widget. To ensure that the beginning of the list is visible then :see 0 should be specified.

The default is that the start of the list is visible; i.e. :see 0. For compatibility with use in other commands :show is recognised as an alias for :see.

:scroll

V|H|B|N

Specifies the generation and location of scroll-bar windows. These may be omitted (N - none); be drawn only vertically to the right of the listbox window (V - vertical); be drawn only horizontally below the listbox window (H - horizontal) or be drawn both vertically and horizontally (B - both).

:command

string

string is any TCL command or commands to be executed when the list is selected.

If a command is supplied and executed in this manner then the click procedure is not invoked.

See also common procedure arguments defined later in this document.
procedure

:galley

name

Creates a galley widget within the current panel frame for the TCL interpreter. A galley widget is a frame window containing a scrollbar window and a text window.
name is used to generate the path name of the windows to be created. It should have the format of a widget name (e.g. :galley GALY) and should be unique within this interpreter. The name will be lower-cased (using the string tolower command) in order to generate the path name used to create the windows.

A galley widget is non interactive (apart from the scroll bar) and thus no click procedure is invoked.

The :galley procedure may also be used directly within a frame window (i.e. before any panel window has been created).
A binding is made to the keyboard Control + P sequence which causes the contents of the text window to be sent to the printer. A binding is made to the keyboard Control + S sequence which causes the contents of the text window to be saved to file.
The :galley procedure may have a number of arguments however none of these is mandatory.

arguments

:x

number

number is the x-co-ordinate within the current panel of the galley widget in pixels

:y

number

number is the y-co-ordinate within the current panel of the galley widget in pixels

The :x and :y parameters may be omitted in which case the packer geometry manager will be used and the position of the window will be determined by the contents of the master (panel) window. If however the :x and :y parameters are supplied then the placer geometry manager will be used to position the window within the master (panel) window.

Warning:
Note that it is not possible to mix use of the packer and placer geometry managers within the same window. Thus all windows within a panel must request or imply that the same geometry manager is used.

:rows

number

number is the number of rows of text to be contained by the text window. This is used to define the height of the text and scrollbar windows.

:cols

number

number is the number of columns of text to be contained by the text window. This is used to define the width of the text window and is used to position the scrollbar window.

:strings

string

string is any text string which is to be written into the text component of the galley widget. It may contain any characters acceptable to the text window. Lines of text longer than the width of the text window will be wrapped at word boundaries.

The default is that the text is left empty.

:see

number

Makes the first character on the line after the one given by number visible at the top of the window.

By default when text is written into the window the last line written is left visible at the bottom of the window. For compatibility with use in other commands :show is recognised as an alias for :see.

:size

S|N|L

Specifies the size of the font to be used for characters in the text window. Options available are small (S); normal (N) and large (L).

The default is that size N (normal) is used.

:scroll

V|H|B|N

Specifies the generation and location of scroll-bar windows. These may be omitted (N - none); be drawn only vertically to the right of the text window (V - vertical); be drawn only horizontally below the text window (H - horizontal) or be drawn both vertically and horizontally (B - both).

The default option is V.

See also common procedure arguments defined later in this document.

procedure

:message
name

Creates a message widget within the current panel frame for the TCL interpreter. A message widget is a frame window containing a message window.
name is used to generate the path name of the window to be created. It should have the format of a widget name (e.g. :message MSG) and should be unique within this interpreter. The name will be lower-cased (using the string tolower command) in order to generate the path name used to create the windows.

A message widget is none interactive and thus no click procedure is invoked.

The path names generated have the root framename.panelname.message-name and the item msg.

The :message procedure may also be used directly within a frame window (i.e. before any panel window has been created).

The message window is placed within its own frame window to create a message widget in order to enable correct implementation of the :valuex argument and also to allow full access to options such as the background colour for the message text.

The :message procedure may have a number of arguments however none of these is mandatory.

arguments

:x

number

number is the x-co-ordinate within the current panel of the message widget in pixels

:y

number

number is the y-co-ordinate within the current panel of the message widget in pixels

The :x and :y parameters may be omitted in which case the packer geometry manager will be used and the position of the window will be determined by the contents of the master (panel) window. If however the :x and :y parameters are supplied then the placer geometry manager will be used to position the window within the master (panel) window.

Warning:
Note that it is not possible to mix use of the packer and placer geometry managers within the same window. Thus all windows within a panel must request or imply that the same geometry manager is used.

:w

number

number is the width of the message window in characters.

The :w parameter may be omitted in which case the size of the message widget will be determined by its contents.

:valuex

value

value is the position of the left hand edge of the message in relation to the left hand edge of the message widget. The value may be expressed in units of pixels or characters.

e.g.
:valuex 100 (pixels);
:valuex 15c (characters)

The :valuex parameter may be omitted in which case the size of the message widget will be determined by its contents.

:label

string

string is a text string to be written into the message widget.

The default is a null string.

:font

string

string is the specification of the font to be used when writing text into the message widget.

By default the font specified for message widgets will be used. If the :font argument is supplied then :bold will be ignored

:justify

string

string is the specification of the justification to be used when writing text into the message widget.

If not supplied the default justification for message windows will be used.

:colour

string

string is the colour to be used when writing text into the message widget.

By default the colour specified for message widgets will be used.

:anchor

where

where can be any valid window point to be used when placing the message within its window.

:anchor is only meaningful when :valuex has also been supplied otherwise it is ignored and the message packed to the left of its window. Valid points are n,s,e,w,nw,ne,se,sw. The default anchor point is ne - i.e. the message is placed justified to the right of its window.

See also common procedure arguments defined later in this document.
procedure

:checkbox

name

Creates a checkbox widget within the current panel frame for the TCL interpreter. A checkbox widget is a frame window containing a label window and a checkbutton window.
name is used to generate the path name of the windows to be created. It should have the format of a widget name (e.g. :checkbox CHK) and should be unique within this interpreter. The name will be lower-cased (using the string tolower command) in order to generate the path name used to create the windows.

When the checkbox is selected using the mouse then the TCL command

click FRAME “ ” CHECKBOX value
will be executed where FRAME and CHECKBOX are widget names and value is the current state (0,1); (off,on) of the checkbox.

The path names generated have the root framename.panelname.checkbox-name and the items label and button.

The :checkbox procedure may also be used directly within a frame window (i.e. before any panel window has been created).

The :checkbox procedure may have a number of arguments however none of these is mandatory.

arguments

:x

number

number is the x-co-ordinate within the current panel of the checkbox widget in pixels

e.g.
:x 400

:y

number

number is the y-co-ordinate within the current panel of the checkbox widget in pixels

e.g.
:y 200

The :x and :y parameters may be omitted in which case the packer geometry manager will be used and the position of the window will be determined by the contents of the master (panel) window. If however the :x and :y parameters are supplied then the placer geometry manager will be used to position the window within the master (panel) window.

Warning:
Note that it is not possible to mix use of the packer and placer geometry managers within the same window. Thus all windows within a panel must request or imply that the same geometry manager is used.

:value

value

value is the initial state of the checkbox (0/off; 1/on).

The default value is 0/off.

:valuex

value

value is the position of the left hand edge of the checkbutton window with relation to the left hand edge of the checkbox widget. It is thus the space available to write the label string but also allows alignment of the checkbutton windows of several checkbox widgets. The value may be expressed in units of pixels or characters.

e.g.
:valuex 100 (pixels);
:valuex 15c (characters)

:label

string

string is a text string to be written into the label component of the checkbox widget.

The default is the name of the checkbox widget.

:w

value

value is the width of the checkbutton in pixels.

By default the size of the checkbutton is determined by the image written into it.

:h

value

value is the height of the checkbutton in pixels.

By default the size of the checkbutton is determined by the image written into it.

:colours

list

list may consist of one or two items which should be any valid colour specification. The first item defines the background colour for the checkbox window and the second item defines the colour when the window is selected.

These colours override any colour selection made using the :colour command or any user colour selection.

If the list contains only one item then only the background colour is defined and the normal method is used to define the colour of the window when selected.
See also common procedure arguments defined later in this document.

procedure

:number

name

Creates a number widget within the current panel frame for the TCL interpreter. A number widget is a frame window containing a label window, entry window and two checkbox windows.
name is used to generate the path name of the windows to be created. It should have the format of a widget name (e.g. :number NUM) and should be unique within this interpreter. The name will be lower-cased (using the string tolower command) in order to generate the path name used to create the windows.

When a number is entered either by pressing the Return key while the keyboard focus is on the entry window or by selection of one of the two checkbox windows using the mouse then the TCL command

click FRAME “ ” NUMBER value
will be executed where FRAME and NUMBER are widget names and value is the current value of the number widget.

The path names generated have the root framename.panelname.number-name and the items label, entry, button-up and button-dn.

The :number procedure may also be used directly within a frame window (i.e. before any panel window has been created).

Normally it is necessary when typing information into the entry window to press the return key in order to generate an event and cause the procedure linked to the entry to be executed. Often users fail to do this and so a binding is made to the mouse focus and the contents of the entry window are checked whenever the mouse focus leaves the entry window. If information is found to have been typed into the entry window which has not been seen by a return key event then an action is taken as is the return key had been pressed.
The :number procedure may have a number of arguments however none of these is mandatory.

arguments

:x

number

number is the x-co-ordinate within the current panel of the number widget in pixels

e.g.
:x 400

:y

number

number is the y-co-ordinate within the current panel of the number widget in pixels

e.g.
:y 200

The :x and :y parameters may be omitted in which case the packer geometry manager will be used and the position of the window will be determined by the contents of the master (panel) window. If however the :x and :y parameters are supplied then the placer geometry manager will be used to position the window within the master (panel) window.

Warning:
Note that it is not possible to mix use of the packer and placer geometry managers within the same window. Thus all windows within a panel must request or imply that the same geometry manager is used.

:w

number

number is the width of the entry window in characters.

e.g.
:w 20

:h

number

number is the height of the number widget in characters.

e.g.
:h 2

The default value is :h 1.

:value

value

value is the initial value of the number.

The default value is 0.

:min

value

value is the minimum value of the number.

:max

value

value is the maximum value of the number.

:inc

value

value is the increment (or decrement) made to the value of the number by the up (or down) buttons.

:valuex

value

value is the position of the left hand edge of the entry window and the right hand edge of the label window with relation to the left hand edge of the checkbox widget. It is thus the space available to write the label string which is right justified within the label window and also allows alignment of the entry windows of several widgets. The value may be expressed in units of pixels or characters.

e.g.
:valuex 100 (pixels);
:valuex 15c (characters)

By default the component windows of the widget are packed within the widget frame..

:label

string

string is a text string to be written into the label component of the number widget.

The default is the name of the number widget.

See also common procedure arguments defined later in this document.

procedure

:gauge

name

Creates a gauge widget within the current panel frame for the TCL interpreter. A gauge widget is a frame window containing three label windows and a scale window.
name is used to generate the path name of the windows to be created. It should have the format of a widget name (e.g. :gauge GG) and should be unique within this interpreter. The name will be lower-cased (using the string tolower command) in order to generate the path name used to create the windows.

A gauge widget is not interactive.

The path names generated have the root framename.panelname.gauge-name and the items label, min, max and scale.

The :gauge procedure may also be used directly within a frame window (i.e. before any panel window has been created).

The :gauge procedure may have a number of arguments however none of these is mandatory.

arguments

:x

number

number is the x-co-ordinate within the current panel of the gauge widget in pixels

e.g.
:x 400

:y

number

number is the y-co-ordinate within the current panel of the gauge widget in pixels

e.g.
:y 200

The :x and :y parameters may be omitted in which case the packer geometry manager will be used and the position of the window will be determined by the contents of the master (panel) window. If however the :x and :y parameters are supplied then the placer geometry manager will be used to position the window within the master (panel) window.

Warning:
Note that it is not possible to mix use of the packer and placer geometry managers within the same window. Thus all windows within a panel must request or imply that the same geometry manager is used.

:w

number

number is the width of the gauge widget in pixels.

e.g.
:w 200

The default action is to allow the geometry manager to determine the size of the widget.

:h

number

number is the height of the gauge widget in pixels.

e.g.
:h 24

The default value is 1 character height.

:value

value

value is the initial value of the gauge scale and determines the position of the divider.

The default value is 0.

:min

value

value is the minimum value of the gauge scale.

:max

value

value is the maximum value of the gauge scale.

:valuex

value

value is the position of the right hand edge of the label window with relation to the left hand edge of the scale widget. It is thus the space available to write the label string which is right justified within the label window. The value may be expressed in units of pixels or characters.

e.g.
:valuex 100 (pixels);
:valuex 15c (characters)

:label

string

string is a text string to be written into the label component of the gauge widget.

The default is the name of the gauge widget.

:gauge-width
value

value is the width of the gauge widget in pixels.

The default value is 80.

:gauge-height
value

value is the length of the gauge widget in pixels.

The default value is 1/10 of the gauge width.

:max-tick-label
string

string is a text string to be used for the label at the right hand end of the gauge.

By default the label shows the maximum value of the gauge scale.

:min-tick-label
string

string is a text string to be used for the label at the left hand end of the gauge.

By default the label shows the minimum value of the gauge scale.

See also common procedure arguments defined later in this document.

procedure

:slider

name

Creates a slider widget within the current panel frame for the TCL interpreter. A slider widget is a frame window containing three label windows, an entry window and a scale window.
name is used to generate the path name of the windows to be created. It should have the format of a widget name (e.g. :slider GG) and should be unique within this interpreter. The name will be lower-cased (using the string tolower command) in order to generate the path name used to create the windows.

When an event is generated either by pressing the Return key after entering a value in the entry window or by releasing mouse button 1 while the mouse focus is on the slider window then ,if available, the TCL script supplied using the :command parameter will be executed. If this is not available the TCL command

click FRAME “” “” SLIDER value
will be executed where FRAME and SLIDER are widget names and value is the current value of the slider widget scale.

The path names generated have the root framename.panelname.slidername and the items label, entry, min, max and scale.

The :slider procedure may also be used directly within a frame window (i.e. before any panel window has been created).

Normally it is necessary when typing information into the entry window to press the return key in order to generate an event and cause the procedure linked to the entry to be executed. Often users fail to do this and so a binding is made to the mouse focus and the contents of the entry window are checked whenever the mouse focus leaves the entry window. If information is found to have been typed into the entry window which has not been seen by a return key event then an action is taken as is the return key had been pressed.
The :slider procedure may have a number of arguments however none of these is mandatory.

arguments

:x

number

number is the x-co-ordinate within the current panel of the slider widget in pixels

e.g.
:x 400

:y

number

number is the y-co-ordinate within the current panel of the slider widget in pixels

e.g.
:y 200

The :x and :y parameters may be omitted in which case the packer geometry manager will be used and the position of the window will be determined by the contents of the master (panel) window. If however the :x and :y parameters are supplied then the placer geometry manager will be used to position the window within the master (panel) window.

Warning:
Note that it is not possible to mix use of the packer and placer geometry managers within the same window. Thus all windows within a panel must request or imply that the same geometry manager is used.

:w

number

number is the width of the slider widget in pixels.

e.g.
:w 200

The default action is to allow the geometry manager to determine the size of the widget.

:h

number

number is the height of the slider widget in pixels.

e.g.
:h 24

The default value is 1 character height.

:value

value

value is the initial value of the slider widget scale and determines the position of the divider.

The default value is 0.

:min

value

value is the minimum value of the slider widget scale.

:max

value

value is the maximum value of the slider widget scale.

:valuex

value

value is the position of the right hand edge of the label window with relation to the left hand edge of the slider widget. It is thus the space available to write the label string which is right justified within the label window. The value may be expressed in units of pixels of characters.

e.g.
:valuex 100 (pixels);
:valuex 15c (characters)

:label

string

string is a text string to be written into the label component of the slider widget.

The default is the name of the slider widget.

:ticks

T|F

If the option T is selected then numerical tick marks are displayed below or to the left of the slider.

The default is F - no tick marks are displayed.

:layout

H|V

If the option V is selected then the slider widget is displayed in a vertical orientation otherwise it is displayed in a horizontal orientation.

The default is that the widget is displayed horizontally.

:scale-length
value

value is the desired long dimension of the scale in pixels.

The default value is 100.

:scale-width

value

value is the desired narrow dimension of the scale in pixels.

The default value is 15.

:slider-width
value

value is the desired size of the slider in pixels.

The default value is 10.

:limit-width

value

value is the desired width of the labels (in characters) drawn at the ends of the slider scale.

The default is that the label widths are determined by the text strings written in them.

:entry-width

value

value is the desired width of the entry widget in pixels.

The default width is 6 pixels.

:resolution

value

value is the desired resolution of the scale window in units per step.

By default the resolution is calculated by {absolute value of (max - min)) / (steps)

:steps

value

value is the desired number of steps in the scale window.

The default value of step is 256. This parameter is ignored unless :resolution is also supplied.

:command

string

string is any TCL command or commands to be executed when an event is generated.

If a command is supplied and executed in this manner then the click procedure is not invoked

See also common procedure arguments defined later in this document.

 procedure

:menubutton

name

Creates a menubutton widget within the current panel frame for the TCL interpreter. A menubutton widget is a frame window containing a menubutton window and menu.
name is used to generate the path name of the windows to be created. It should have the format of a widget name (e.g. :menubutton MENU) and should be unique within this interpreter. The name will be lower-cased (using the string tolower command) in order to generate the path name used to create the windows.

When a menu item is selected by releasing mouse button 1 while the mouse focus is on a menu item then ,if available, the TCL script supplied using the :command parameter will be executed. If this is not available the TCL command

click FRAME “ ” MENUBUTTON item index
will be executed where FRAME and MENUBUTTON are widget names and item is the contents of the menu entry selected. If mouse button 3 is released while the mouse focus is on the menubutton window then the default menu entry is returned as item. index is the index (from zero) of the selected item in the menu.

The path names generated have the root framename.panelname.menu-buttonname and the item menu.

The :menubutton procedure may also be used directly within a frame window (i.e. before any panel window has been created).

The :menubutton procedure may have a number of arguments however none of these is mandatory.

arguments

:x

number

number is the x-co-ordinate within the current panel of the menubutton widget in pixels

e.g.
:x 400

:y

number

number is the y-co-ordinate within the current panel of the menubutton widget in pixels

e.g.
:y 200

The :x and :y parameters may be omitted in which case the packer geometry manager will be used and the position of the window will be determined by the contents of the master (panel) window. If however the :x and :y parameters are supplied then the placer geometry manager will be used to position the window within the master (panel) window.

Warning:
Note that it is not possible to mix use of the packer and placer geometry managers within the same window. Thus all windows within a panel must request or imply that the same geometry manager is used.

:w

number

number is the width of the menubutton window in characters.

e.g.
:w 20

:h

number

number is the height of the menubutton window in lines of text.

e.g.
:h 2

The :w and/or :h parameters may be omitted in which case the size of the menubutton will be determined by its contents. If however the :w and :h parameters are supplied then these will be used to configure the button window. Normally :h will not be supplied.

:value

value

value is the index of the default menu item within the menu.

The default value is 0.

:label

string

string is a text string to be written onto the menubutton window.

The default is the name of the menubutton widget.

:strings

list

list is a simple TCL list of text strings which form the elements of the menu.

The default is a null list and hence an empty menu.

:menu

list

list is a TCL list of items which form the elements of the menu. Each item may be a simple string in which case it is appended as the name of a command in the current menu. However an item may itself be a list in which case the first element of the item is appended as the name of a cascade in the current menu and the remaining elements of the item are used to construct the cascade menu.

It is not meaningful that :menu and :string are both specified in the same command.

:command

string

string is any TCL command or commands to be executed when an event is generated.

If a command is supplied and executed in this manner then the click procedure is not invoked

The arguments :rows and :cols are no longer available since the use of :menu permits menus to be structured as required.
See also common procedure arguments defined later in this document.
procedure

:optionbutton

name

Creates an optionbutton widget within the current panel frame for the TCL interpreter. An optionbutton widget is a button window. A list of options is associated with the widget and the currently selected option is displayed within the button window. Items from the option list are selected cyclically using the mouse.
name is used to generate the path name of the window to be created. It should have the format of a widget name (e.g. :optionbutton OPT) and should be unique within this interpreter. The name will be lower-cased (using the string tolower command) in order to generate the path name used to create the window.

When the button is selected using the mouse then ,if available, the TCL script supplied using the :command parameter will be executed. If this is not available the TCL command

click FRAME “ ” OPTIONBUTTON index option
will be executed where FRAME and OPTIONBUTTON are widget names, index is the index (from zero) into the option list of the current option and option is the current option.

The path name generated has the form framename.panelname.buttonname.

The :optionbutton procedure may also be used directly within a frame window (i.e. before any panel window has been created).

The :optionbutton procedure may have a number of arguments however none of these is mandatory.

arguments

:x

number

number is the x-co-ordinate within the current panel of the optionbutton widget in pixels

e.g.
:x 400

:y

number

number is the y-co-ordinate within the current panel of the optionbutton widget in pixels

e.g.
:y 200

The :x and :y parameters may be omitted in which case the packer geometry manager will be used and the position of the window will be determined by the contents of the master (panel) window. If however the :x and :y parameters are supplied then the placer geometry manager will be used to position the window within the master (panel) window.

Warning:
Note that it is not possible to mix use of the packer and placer geometry managers within the same window. Thus all windows within a panel must request or imply that the same geometry manager is used.

:w

number

number is the width of the optionbutton window in characters.

e.g.
:w 20

:h

number

number is the height of the optionbutton window in lines of text.

e.g.
:h 2

The :w and/or :h parameters may be omitted in which case the size of the optionbutton will be determined by its contents. If however the :w and :h parameters are supplied then these will be used to configure the button window. Normally :h will not be supplied.

:value

value

value is the index of the default option item within the option list.

The default value is 0.

:strings

list

list is a simple TCL list of text strings which form the elements of the option list.

The default is a null list and hence an empty option list. :menu is an alias for :strings.

:command

string

string is any TCL command or commands to be executed when an event is generated.

If a command is supplied and executed in this manner then the click procedure is not invoked

See also common procedure arguments defined later in this document.
procedure

:choice

name

Creates a choice widget within the current panel frame for the TCL interpreter. A choice widget is a frame window containing a number of checkbutton windows and (optionally) a label window.
name is used to generate the path name of the windows to be created. It should have the format of a widget name (e.g. :choice CH) and should be unique within this interpreter. The name will be lower-cased (using the string tolower command) in order to generate the path name used to create the windows.

When a choice is selected by releasing mouse button 1 while the mouse focus is on the choice then the TCL command

click FRAME “ ” CHOICE value
will be executed where FRAME and CHOICE are widget names and value is determined by which choice or choices are currently selected (see :exclusive).

The path names generated have the root framename.panelname.choice-name and the items label and button*.

The :choice procedure may also be used directly within a frame window (i.e. before any panel window has been created).

The :choice procedure may have a number of arguments however none of these is mandatory.

arguments

:x

number

number is the x-co-ordinate within the current panel of the choice widget in pixels

e.g.
:x 400

:y

number

number is the y-co-ordinate within the current panel of the choice widget in pixels

e.g.
:y 200

The :x and :y parameters may be omitted in which case the packer geometry manager will be used and the position of the window will be determined by the contents of the master (panel) window. If however the :x and :y parameters are supplied then the placer geometry manager will be used to position the window within the master (panel) window.

Warning:
Note that it is not possible to mix use of the packer and placer geometry managers within the same window. Thus all windows within a panel must request or imply that the same geometry manager is used.

:w

value

value is the width of the checkbutton windows in characters.

e.g.
:w 10

:value

value

value determines the initially selected checkbutton or checkbuttons (see :exclusive).

The default value is 0 (no items selected).

:valuex

value

value is the position of the right hand edge of the label window with relation to the left hand edge of the choice widget. It is thus the space available to write the label string but also allows alignment of the checkbutton windows of several choice widgets. The value may be expressed in units of pixels or characters.

e.g.
:valuex 100 (pixels);
:valuex 15c (characters)

The default value is 0. If :valuex is specified then a label window will be created even if :label is not specified (in which case the label will be a single space character).

:label

string

string is a text string to be written into the label component of the choice widget.

By default no label window is created. A non null :label string (a single space is adequate) causes the label window to be created (see also :valuex)..

:strings

list

list is a TCL list of strings. For each item in the list a checkbutton window is created and the item string is written onto the checkbutton.

The default is a null list.

:layout

V|H

defines the layout (Vertical or Horizontal) of the components of the choice widget.

The default layout is H.

:exclusive

T|F

If True then only one checkbutton at a time may be selected and :value defines the index of the selected checkbutton within the list of available checkbuttons. If False then any number of checkbuttons may be selected and value is a bitmap which defines the selected checkbuttons within the list of available checkbuttons. The low order bit of the bitmap corresponds to checkbutton index = 0.

The default is T.

See also common procedure arguments defined later in this document.

procedure

:choice-stack

name

Creates a choicestack widget within the current panel frame for the TCL interpreter. A choicestack widget is a frame window containing a menubutton window, menu, message window and (optionally) label window.

name is used to generate the path name of the windows to be created. It should have the format of a widget name (e.g. :choicestack CHSTK) and should be unique within this interpreter. The name will be lower-cased (using the string tolower command) in order to generate the path name used to create the windows.

When a choice is selected by releasing mouse button 1 while the mouse focus is on an item in the menu then the TCL command

click FRAME “ ” CHOICESTACK index item
will be executed where FRAME and CHOICESTACK are widget names, index is the index of the selected menu item within the choicestack menu and item is the contents of the menu item selected.

The selected menu item is written into the message window.

The path names generated have the root framename.panelname.choice-stackname and the items menu, message and label.

The :choice-stack procedure may also be used directly within a frame window (i.e. before any panel window has been created).

The :choice-stack procedure may have a number of arguments however none of these is mandatory.

arguments

:x

number

number is the x-co-ordinate within the current panel of the choicestack widget in pixels

e.g.
:x 400

:y

number

number is the y-co-ordinate within the current panel of the choicestack widget in pixels

e.g.
:y 200

The :x and :y parameters may be omitted in which case the packer geometry manager will be used and the position of the window will be determined by the contents of the master (panel) window. If however the :x and :y parameters are supplied then the placer geometry manager will be used to position the window within the master (panel) window.

Warning:
Note that it is not possible to mix use of the packer and placer geometry managers within the same window. Thus all windows within a panel must request or imply that the same geometry manager is used.

:value

value

value is the index of the initially selected item within the choice menu. The selected menu item is written into the message window.

The default value is 0.

:valuex

value

value is the position of the left hand edge of the menubutton window with relation to the left hand edge of the checkbox widget. It is thus the space available to write the label string but also allows alignment of the menubutton windows of several checkbox widgets. The value may be expressed in units of pixels or characters.

e.g.
:valuex 100 (pixels);
:valuex 15c (characters)

The default value is 0. If :valuex is specified then a label window will be created even if :label is not specified (in which case the label will be a single space character).

:label

string

string is a text string to be written into the label component of the choice-stack widget.

By default no label window is created. A non null :label string (a single space is adequate) causes the label window to be created (see also :valuex).

:strings

list

list is a simple TCL list of text strings which form the elements of the menu.

The default is a null list and hence an empty menu.

:menu

list

list is a TCL list of items which form the elements of the menu. Each item may be a simple string in which case it is appended as the name of a command in the current menu. However an item may itself be a list in which case the first element of the item is appended as the name of a cascade in the current menu and the remaining elements of the item are used to construct the cascade menu.

It is not meaningful that :menu and :string are both specified in the same command.

The arguments :rows and :cols are no longer available since the use of :menu permits menus to be structured as required.
See also common procedure arguments defined later in this document.

procedure

:spectrum
name class action args

Creates a spectrum widget within the current panel frame for the TCL interpreter.

name is used to generate the path name of the window to be created. It should have the format of a widget name (e.g. :spectrum s0) and should be unique within this interpreter. The name will be lower-cased (using the string tolower command) in order to generate the path name used to create the window.

The :spectrum procedure has a number of arguments which determine the action required.

arguments

:class

name

name is the class of action to be performed.

:action

name

name is the action required which is a member of the current class.

:args

list

list are arguments required by the current action. Not all actions require an args list.

spectrum

create

:x value :y value :w value :h value

overlap
[name]

removeoverlaps

add

[name]

remove

squeeze

current
[|m|ptr]

title

[|n]

size

name

[|m]

save

[n]

get

overlap-dataset

data

linestyle

refresh

info

add-dataset

clear

get

overlay-dataset
[i j]

data

[base range counts]

linestyle

[0|1|2]

refresh

info

add-dataset

[i j]

size

[i j] | [i j k l]

refresh

tags

calibrations

configure

-colourmap

-overlapcolourmap

-style

-select

cget

view

shift

[n]

scale

[n]

reset

undo

redo

get

current

get

dimension

channel

[x y]

count

[x y]

calibration

[x y]

channelx

[x y]

channely

[x y]

calibrationx

[x y]

calibrationy

[x y]

decalibrationx
[l]

decalibrationy
[l]

box

gate

pop

[m]

push

[l m]

get

[m]

set

[x1,y1 x2,y2]

vertex hit
[x y]

vertex add

vertex remove

vertex set

get2d

select

set2d

pointer

pop

get

push

set

size

tag

near

x y

set

x y

get

n

push

n

pop

n

get2d

n

push2d
x y

move

cut
x | y
chan
matrixptr cutptr

procedure

:canvas

name

Creates a canvas widget within the current panel frame for the TCL interpreter.

name is used to generate the path name of the window to be created. It should have the format of a widget name (e.g. :canvas CVS) and should be unique within this interpreter. The name will be lower-cased (using the string tolower command) in order to generate the path name used to create the window.

Currently the canvas widget is non interactive and thus no click procedure is invoked.

The :canvas procedure may also be used directly within a frame window (i.e. before any panel window has been created).

The :canvas procedure may have a number of arguments however none of these is mandatory.

arguments

:x

number

number is the x-co-ordinate within the current panel of the canvas widget in pixels

e.g.
:x 400

:y

number

number is the y-co-ordinate within the current panel of the canvas widget in pixels

e.g.
:y 200

The :x and :y parameters may be omitted in which case the packer geometry manager will be used and the position of the window will be determined by the contents of the master (panel) window. If however the :x and :y parameters are supplied then the placer geometry manager will be used to position the window within the master (panel) window.

Warning:
Note that it is not possible to mix use of the packer and placer geometry managers within the same window. Thus all windows within a panel must request or imply that the same geometry manager is used.

:w

number

number is the width of the canvas widget in pixels

e.g.
:w 400

:h

number

number is the height of the canvas widget in pixels

e.g.
:y 200

The :canvas procedure creates an empty window into which objects can be created using the :draw procedure.

procedure

:draw

object

Creates an item of type object on the current canvas. object should be one of the following: arc, bitmap, image, line, oval, polygon, rectangle, text,window.

The :draw procedure may have a number of arguments however none of these is mandatory.

arguments

:colour

string

string is the colour to be used when drawing the current object. It is used to configure the object using the -fill option.

e.g.
:colour red

:text

string

string is the text to be used when drawing the current object. It is used to configure the object using the -text option.

e.g.
:text “hello word”

:tag

name

name is used to configure the object using the -tags option

:arrow

string

string is used to configure the object using the -arrow option. string should have one of the values; none, first,last or both.

:delete

T

The tag specified by a previous :tag argument is to be deleted.

e.g.
:draw text :tag l0 :delete T

:value

list

list are items to be used when creating the object. All arguments remaining in the procedure call are used in this way and so :value must be the last argument.

e.g.
:draw line :value 20 0 20 10

This argument provides a way by which any selection of options can be supplied to configure the object.

e.g.
:draw arc :value 10 10 30 40 -extent 45 -outline blue
Common Procedure Arguments
procedure

All except :frame and :panel

The following arguments are available for all procedures (except :frame and :panel).

:show

T|F

If the value is True then the window or widget is made visible; if False then the window or widget is made non visible.

The default is that widgets are visible.

:deaf

T|F

If the value is True then the window or widget is made non-interactive; if False then the window or widget is made interactive.

The default is that widgets are interactive. Note however that some widgets (e.g. panel and message) are only non-interactive.

:inactive

T|F

If the value is True then the window or widget is made inactive (displayed dimmer than normal); if False then the window or widget is made active (normal state). The window or widget will also be made non-interactive.

The default is that widgets are active.

:bold

T|F

If the value is True then text displayed within the window or widget will use a bold font; if False then text will be displayed using a normal font.

The default is that a normal font is used.

:double-click
T|F

If the value is True then interactive windows and widgets are bound to a double mouse click event in addition to the normal single mouse click event. The first click causes the click procedure to be entered and the second click causes the double-click procedure to be entered. If the value is False then only single mouse click events are enabled.

The default is that only single click events are enabled.

:help

text

text is information to be used for level 1 (task local) help. For further information see the section on the Help System later in this document.

:helpitem

name

name is the name to be used when storing and accessing level 1 help. . For further information see the section on the Help System later in this document.

The default is that the widget name is used.

All except :frame

The following arguments are available for all procedures (including :panel).

:after

widget

widget defines a widget name to be used by the packer geometry manager when inserting the widget into the pack list. The current widget is inserted into the list after widget. This also becomes the default action for all further widgets within the current frame widget.

:before

widget

widget defines a widget name to be used by the packer geometry manager when inserting the widget into the pack list. The current widget is inserted into the list before widget. This also becomes the default action for all further widgets within the current frame widget.

Additional procedures

The following procedures are available at any time after the first :frame procedure has been called

procedure

:path

widget

Given a widget name the full TK path name of the window created (or of the frame window created to hold a complex widget) is returned.

e.g.
:path MSG

may return

.app.panel.msg

procedure

:show

T|F

If the value is True then the master window is made visible; if False then the master window is made non visible.

It is normally necessary for a :show T procedure call to be made at the end of definition of the master window.

The :show procedure also configures the footer width to the width of the frame and sets the keyboard focus to follow the mouse position. The procedure open-frame also causes the window to be made visible but does not define the keyboard focus. This is useful if an application for some reason requires a different keyboard focus algorithm.

procedure

:set

item

value

Allows access to the internal constants used by the procedures. The constant held in the TCL global variable _item is set to value.

Current constants and their default values are :

listch (17); listcw (7); chkbtsize (24); chcesize (24); charh (25); charw (7); footercharw (6)

The :set procedure can be used to redefine options to be used by the packer geometry manager for future widgets.

layout

default left

anchor

default nw

expand

default yes

fill

default both

ipadx

default 0

ipady

default 0

padx

default 0

pady

default 0

footer-position
default left

procedure

:enable
widget
events

Allows additional events to be bound to a window. widget is either a widget name (it does not start with a period) or is a window name (it does start with a period).events are a list of TK events which are to be bound to the widget/window.

e.g.
:enable F1 Enter

This causes an event to be generated when the mouse enters the window identified by F1. The TCL procedure

click frame :Enter widget

will be invoked.
procedure

:help
widget
text

text defines information to be used for level 1 (task local) help for widget. For further information see the section on the Help System later in this document.
procedure

:colour
mode window [option value]

Defines the colour to be used for future widgets.

mode can be either local (the colour selection applies only to this interpreter) or global (the colour selection will apply to the whole session).

window is the window type and is one of: frame, label, entry, listbox, text, message, scale, scrollbar, button, checkbutton, menubutton, canvas.

option is the window component and is one of: activebackground, activeforeground, background, disabledforeground, highlightbackground, highlightcolor, insertbackground, selectcolor, selectbackground, selectforeground, troughcolor.

value is the colour to use for the selected item.

Note - not all options are valid for all window types.
procedure

:font

mode window weight [component value]

Defines the font to be used for future widgets.

window is the window type and is one of: label, entry, listbox, text, message, scale, button, checkbutton, menubutton, entry, menu.

mode can be either local (the font selection applies only to this interpreter) or global (the font selection will apply to the whole session).

weight is the font weight and is either b (bold) or n (medium)

component is the window component and is one of: :fndry, :fmly, :wght, :pxlsz, :ptsz, :slant, :swdth, :rgstry.

value is the value to use for the selected component.

Default values: fndry=adobe; fmly=helvetica; pxlsz=12; ptsz=120; slant=r; swdth=normal; rgstry=iso8859.
The following procedures are useful following a :panel procedure call to modify options used in the creation of widgets within the panel;.
procedure

:layout

L|R|T|B|H|V

The value supplied determines which side of the master should be used when packing slave windows into the master. Left, Right,Top and Bottom are layout options specific to the packer geometery manager and the geometry manager flag is set so that the packer is used for subsequent widgets within the current panel. Horizontal and Vertical are options which select the placer geometry manager and the geometry manager flag is set so that the placer is used for subsequent widgets within the current panel.

arguments

:pack

T|F

If the value is True then the value of the geometry manager flag is set so that the packer is used by default for subsequent widgets within the current panel; if the value is False then the value of the geometry manager flag is set so that the placer is used by default for subsequent widgets within the current panel.

:place

T|F

If the value is True then the value of the geometry manager flag is set so that the placer is used by default for subsequent widgets within the current panel; if the value is False then the value of the geometry manager flag is set so that the packer is used by default for subsequent widgets within the current panel.

:anchor

where

where should be a valid window point to be used when placing or packing slave windows within their master window. The parameter supplied is used by default for subsequent widgets within the current panel.

Valid points are n,s,e,w,nw,ne,se,sw.

procedure

:row-gap

value

See the :row-gap argument of the :panel procedure. This procedure allows the current row gap to be changed. It also causes the geometry manager selected to be the placer.
procedure

:col-gap

value

See the :col-gap argument of the :panel procedure. This procedure allows the current column gap to be changed. It also causes the geometry manager selected to be the placer.
procedure

:next-row
T

Sets the current x position (used when placing widgets) to 0 and increments the y position (used when placing widgets) by the height of the last widget created plus any additional space specified by the row-gap parameter. It also causes the geometry manager selected to be the placer.
procedure

:next-col

T

Sets the current y position (used when placing widgets) to 0 and increments the x position (used when placing widgets) by the width of the last widget created plus any additional space specified by the col-gap parameter. It also causes the geometry manager selected to be the placer.

procedure

:hskip

number

number is a value in pixels to be added to the current x position (used when placing widgets). number may be positive in which case positioning skips to the right or it may be negative in which case positioning skips to the left.

procedure

:vskip

number

number is a value in pixels to be added to the current y position (used when placing widgets). number may be positive in which case positioning skips downwards or it may be negative in which case positioning skips upwards.

Changing existing widget options

Once created many of the options specified for the widget may subsequently be changed. This is particularly useful for adding to or changing the contents of list and galley widgets. However menus can be dynamically defined by changing the list of strings which is used to specify the menu list.

procedure

:modify

name
arguments

arguments define changes required to the widget known by name.

The changes possible are determined by the type of widget. Unless specified otherwise the definition of the procedure which created the widget should be referenced for a definition of the arguments.

Widget type
frame

arguments

:label

string

:w

number

:h

number

:closed

T|F

:delete

T
deletes the frame widget

:busy

T|F
see footer description

:transient

T

Widget type
panel

arguments

:w

number

:h

number

:delete

T
deletes the panel widget

Widget type
button

arguments

:deaf

T|F

:inactive

T|F

:busy

T|F
if T then button show sunken

:label

string

:colour

value

Widget type
text

arguments

:label

string

:w

number

:value

string

:deaf

T|F

:inactive

T|F

Widget type
list

arguments

:strings

list

:rows

number

:cols

number

:show

T|F

:see

number

:select

value

:deselect

value

:empty

T|F

:append

T|F

Widget type
galley

arguments

:strings

list

:rows

number

:cols

number

:see

number

:show

T|F

:inactive

T|F

:empty

T|F

:append

T|F

:usingtag

number

:createtag

number

:deletetag

number

:usingtag defines the tag to be used by subsequent :strings arguments.

:createtag creates (configures) a tag in the text widget and :deletetag delete a tag.

Widget type
message

arguments

:label

string

:font

string

:colour

string

:bold

T|F

Widget type
checkbox

arguments

:value

value

:deaf

T|F

:inactive

T|F

:colours

list

Widget type
number

arguments

:deaf

T|F

:inactive

T|F

:label

string

:value

value

Widget type
gauge

arguments

:label

string

:value

value

:min

value

:max

value

:max-tick-value
value

:inactive

T|F

Widget type
slider

arguments

:label

string

:value

value

:min

value

:max

value

:inactive

T|F

Widget type
menubutton

arguments

:strings

list

:menu

list

:label

string

:inactive

T|F

Widget type
optionbutton

arguments

:strings/:menu
list

:value

value

:inactive

T|F

Widget type
choice

arguments

:value

value

:inactive

T|F

Widget type
choice-stack

arguments

:strings

list

:menu

list

:value

value

:inactive

T|F

Widget type
canvas

arguments

:w

number

:h

number

delete

T|F

The Frame Footer and Busy Indicator

The argument :show-footer T of the frame procedure causes the footer to be created for the frame widget. The footer is a frame window having a width equal to the width of the frame widget and a height of 1 character. It is positioned at the bottom of the frame widget.

The footer widget contains a message window which is used to hold short term information messages from the application. By default the message is left justified by this can be modified by the command

:set footer-position
location

executed before the :frame procedure call which creates the footer.

The path names generated have the root framename.footer and the item footer. The widget name FOOTER is generated allowing reference to the footer widget in the same way as all other widgets.

Messages are inserted into the footer by the procedure

set-footer
[frame]
string

where frame is the name of a FRAME widget which may be omitted in which case the main frame for the application is used and string is the text to be inserted into the footer. The text will if necessary be truncated in order to fit the single line of the footer.

Messages are removed by the procedure clear-footer [frame] which is equivalent to set-footer [frame] “”.

A binding is made such that clicking mouse button 1 on a footer message causes the message to be cleared.

The busy indicator is normally used by the application to indicate that it is performing some action which may take more than the normal interactive response time. Typically this is used during networked server accesses and when spanning a shell to execute a program in foreground. The indicator is created by configuring the background colour of the footer widget windows. The colour used is taken from the task variable tkfooterbusycolor. It has the default value Pink.

If the footer message is empty at the time that the busy indicator is enabled then the message Busy.... is additionally put into the footer.

The busy indicator is controlled by the command

:modify FRAME :busy T|F

The procedures set-busy and clear-busy are also provided.

A binding is made such that clicking mouse button 3 on the footer area causes the busy indicator to be cleared.
Window Auto-Size

If the packer window manager is used throughout then the sizes of panels and frames is determined automatically by their contents. However, if any option is used which requires that the placer window manager is used (for example the use of rows and columns for laying out panels) then it is necessary that the panel is given a explicit size.

The library routines when placing widgets in panels track the maximum x and y co-ordinates used and this information can be used to supply the width and height needed for the panel. For this feature to be enabled the :panel command must not supply a width (:w) or height (:h) when creating the panel.

It no explicit size is given to a panel then the autosize feature will supply it. This feature can also be disabled by use of the command :set autosize 1.

Autosize is only available for the panel widget. It is expected that normally no absolute positioning information (:x and :y) will be given via the :panel command and that panel widgets are then packed into the frame widget which will then be autosized by the geometry manager.

Note that the :show T command at the end of the frame creation will configure the frame footer (if it exists) to be the width of the frame.

Text windows created by the :galley procedure do not usually resize automatically to best fill the window when the frame is resized to increase its size. (The window manager does seem to respond correctly when the frame is made smaller).

The :galley_size procedure should be called at the end of the creation of a frame containing a galley and after the frame has been opened in order to establish initial sizes of the windows.

The galley would have been created with something like

:galley $W :rows $rows :cols $cols

and the :galley_size procedure would then be

:galley_size $W $rows $cols

The :galley_resize procedure should be called whenever it is required to check if the galley can be resized to fit the window.

:galley_resize $W

Typically a binding is made to create an event whenever the mouse moves into or out of the frame.

:enter [self frame-name] Enter

Help System
The Help System for the Midas package splits into 2 components -

1)
features which are executed within each task

These facilities give immediate help on the use of each widget within the task using the window footer and slightly more information using a pop-up dialog window.

2)
features which are executed within the help task.

These facilities allow for more extensive help possibly envoking an external viewer program to show a document. The response time may be measured in several seconds if an external program has to be started.

Task local features
These require that help information is available in the TCL array :help. Help is linked to a widget and (by default) help information for widget FRED is in :help(FRED).

It is possible to specify the help item name to be used by the parameter :helpitem name in the widget creation procedure call. For example
:button ATTACH :helpitem CONNECT

would create a button labelled as Attach but take help information from :help(CONNECT).

If the array element DEFAULTHELP exists then this information is used for any widget which does not have its own private help information.

The parameter :help F in the widget creation procedure call causes setup of the bindings which implement the task local help for a widget to be bypassed.

The task TCL script can load help information in one of 4 ways

1) directly by a set command -

set :help(FRED) "This is the FRED widget"
2) using the :help procedure -

:help FRED "This is the FRED widget"

3) as an argument to the procedure creating the widget -

:button FRED :help "This is the FRED widget"

4) within the file $taskname.txt which is searched for using the TCLPATH variable. Normally this would imply that for a task there are 2 files $taksname.tcl and $taskname.txt
The format of the .txt file is

+widget FRED

This is the FRED widget

The FRED widget is a really wonderful thing

+widget JIM

etc

The first line of the help information for the widget is put into the window footer while the mouse is over the widget and removed when the mouse leaves the window. Since this action can in some cases cause problems by overwritting other useful footer information it can be controlled by the TCL global variable _suppresshelp. Setting _suppresshelp to 0 enables the action and setting _suppresshelp to 1 disables it.

The whole of the help information is shown in a dialog window if button F1 is pressed while the mouse is over the widget.

To implement the level 1 help feature bindings are made by all widget creation procedures for the events Enter and Leave (unless suppressed by the :help F parameter).

Facilities within the help task

1) These can be called by creating a button using

 :button HELP :command click-help

The default click-help procedure then calls the help task help-on-task procedure with (by default) the calling task's name.

The task name used in the call to the Help task can be specified by the TCL variable helpname.

For example: click-help in the task ap will invoke help-on-task ap but if set helpname apparatus were specified then click-help would invoke help-on-task apparatus.

2) Pressing the Shift-F1 button while the mouse is over a window calls (by default) the help task help-on-widget procedure with the widget name.

Note that when the mouse is positioned over the window background the help-on-task procedure is called.

The task name and widget name to be used can be specified as described previously. For example in the task ap widget ATTACH would invoke help-on-widget ap ATTACH but this could be changed as shown to help-on-widget apparatus CONNECT.

The help information will be searched for taking the TCLPATH variable but first substituting manual for tcl.

help-on-widget will look for a file of the form $taskname.$widget.fmt or $taskname/$widget.fmt and help-on-task will look for $taskname.fmt or $taskname/$taskname.fmt or $taskname/fmt

where fmt can be one of html dvi ps prn txt

The latter examples allow all help for a task to be within a directory having the name of the task (or the specified alternative).

example - for the task ap (apparatus access) manual information on the Claim command can be found in the file /MIDAS/manual/ap.CLAIM.txt and the Help button shows information in the file /MIDAS/manual/ap.txt
Note - since the task help information probably contains information from the individual widget files records of the form +++widget.txt are permitted in the task.txt file and cause the contents of the file task.widget.txt to be substituted.

NOTES

If an action calls the help task which then cannot find any information the task level actions are then tried as a secondary source.

Also if the task level action for a widget is invoked but no help is available then the help task is tried as a secondary source.

All procedures used at task level to implement the Help System are in the common.tk.tcl file. The necessary bindings are included within the :frame and individual widget procedures.

The Alt+F1 binding is available to aid implementors check new and updated level 1 help. The binding calls the :load-help procedure (which is also called when the task loads the common.tk.tcl file) to update the local help information held within the task.

Useful Procedures

procedure self

The name of the task (which should also be the name of the parent frame widget) should be set in the global variable framename or frame. By default the variable frame is set to the task name.

The frame title (which will be written by the window manager in the window title bar) should be set in the global variable frametitle or title.

The icon title (which will be used to label the icon when the window is closed) should be set in the global window icontitle or iconname.

The procedure self may have the argument frame-name which returns the frame name; the argument frame-title which returns the frame title or the argument icon-title which returns the icon title.
procedure click

The call-back mechanism from the widgets requires that a click procedure exist. The library contains a default click procedure which may be used if the rules enforced by it are acceptable.

The frame name containing the widget is stored in the TCL global variable FRAME; the command returned is stored in the TCL global variable COMMAND and the widget returned is stored in the TCL global variable WIDGET.
If the COMMAND is :quit then the procedure click-quit is called with FRAME as an argument.

If the call-back is from WIDGET then an attempt is made to call the procedure click-widget if it exists. The number of argument in the supplied procedure is checked. Zero or one argument (to hold returned value) are acceptable. If no procedure with the name click-widget is found then an attempt is made to invoke the procedure click-default. Again zero or one arguments are acceptable. If no procedure with the name click-default is found then the call-back is logged to the diagnostic stream and ignored.

procedure click-quit

Accepts zero or one argument (a frame widget name). The frame is iconized. The default frame is the top level frame from the application.

procedure start

If the application is new (determined by the value of the TCL global variable started) the procedure first calls the procedure make-frame otherwise it deiconizes the frame and brings it to the front on the screen. The procedure click-redisplay is called if it exists.

procedure finish
Destroys the frame and sets the TCL global variable started to its initial value.

A number of procedures are available which can be used to control frame widgets. By default if a frame widget name is not supplied then they act on the parent frame for the task.

procedure open-frame (also bring-to-front which is an alias)

Accepts an optional argument which is a frame widget name. Causes the frame to be deiconified if it is closed and the footer width to be configured using the width of the displayed frame.

procedure show-frame
As open-frame except that the footer width is not configured. Should be used if the width of the frame may be unreliable - ie immediately after creation.
procedure close-frame

Accepts an optional argument which is a frame widget name.
procedure destroy-frame

Accepts an optional argument which is a frame widget name.

procedure centre-frame

Positions the frame in the center of the screen. Accepts an optional argument which is a frame widget name.

procedure position-frame

x y [frame]

Positions the frame at the screen screen co-ordinates x y. Accepts an optional argument which is a frame widget name.

Procedures which generate general purpose dialog or transient pop-up windows.

procedure midas_dialog

This procedure accepts the same arguments as tk_dialog which it replaces. It contains a number of implementation changes to circumvent problems in tk_dialog. The global variable dialog_wraplength (which has the default value 6I) controls the width of the dialog window.

procedure midas-warning

msg

Creates a warning dialog pop-up window containing the text msg and a button labelled continue. The procedure returns only after a mouse click on the continue button.

procedure midas-report

msg

Creates a report dialog pop-up window containing the text msg and a button labelled Ok. The procedure returns only after a mouse click on the Ok button.

procedure midas-confirmation
msg

Creates a confirmation dialog pop-up window containing the text msg and buttons labelled cancel and continue. The procedure returns only after a mouse click on one of the buttons. The procedure returns the value 0 if the cancel button is selected and the value 1 if the continue button is selected.

procedure midas-error

error msg

If error is not a null string then it is an error code returned by a Midas library routine. An error report is constructed using error, any text associated with error and msg. An error report dialog pop-up window containing the text generated and buttons labelled continue and abort is created. The procedure returns only after a mouse click on one of the buttons. The procedure returns the value 0 if the continue button is selected and the value 1 if the abort button is selected.

procedure display-midas-error-report

p error msg

If error is not a null string then it is an error code returned by a Midas library routine. An error report is constructed using error, any text associated with error and msg. An error report dialog pop-up window containing the text generated and buttons labelled continue and Stack Trace is created. The procedure returns only after a mouse click on one of the buttons. The procedure returns the error report text. Note that the first argument (p) is no longer used.

procedure remove-midas-error-report

args

Retained for compatibility with previous versions. Has no current action.
procedure midas-show-file

file

Displays the contents of the file having path file in an information frame containing a text scroll window.
procedure midas-information
text

Displays the contents of the argument text in an information frame containing a text scroll window. This procedure should be used in preference to midas-report and midas-warning when the amount of text may be excessive for insertion in a dialog pop-up window which cannot be scrolled.

procedure midas-save-window
name
Normally called by the default binding to the Control+S keyboard sequence. Permits the contents of a text or listbox window to be saved to a disc file. A browser window is started to obtain the filename to be used.

procedure midas-print-window
name
Normally called by the default binding to the Control+P keyboard sequence. Permits the contents of a text or listbox window to be printed.

