
Compression for AIDA 
 

The algorithm used is “bit-packed minimum+offset”. 
 
The input data is in fixed and known length blocks of 16-bit words. The output data 
consists of a 16-bit word containing the number of bits each input word has been 
packed into, followed by a second 16-bit word containing the smallest value in the 
input block, followed by the compressed data. 
 
The compression technique is to search for the minimum & maximum values in the 
input block; the difference between them is the range. Each input word will be 
expressed, on output, as an offset from the minimum. The range is the largest value 
that will occur. Each of the offsets can be stored in a number of bits no greater than 
that needed to store the range. During compression, each word offset is stored packed 
next to the preceding offset. High order zero-bits beyond that needed to store the 
range are not stored. 
 
Examples 
Minimum: 1216, Maximum: 1222 
Range: 6,  In binary: 0000 0000 0000 0110 

Bits needed per compressed word: 3 
Data: 1221, 1220, 1218, 1216, 1217, … (Require 5 * 16 bits = 80 bits => 10 bytes) 
Offsets: 5, 4, 2, 0, 1, … (Require 5*3 bits = 15 bits => 1 bytes + 7 (bits) = 2 bytes) 
Binary: 101, 100, 010, 000, 001, … 
Packed:  10100101, 0010000 … 
Decimal: 165, 16 … 
Bitstream: (shown in opposite order) …0010000|10100101 
 
Minimum: 1216, Maximum: 1234 
Range: 18, In binary: 0000 0000 0001 0010 

Bits needed per compressed word: 5 
Data: 1231, 1220, 1233, 1216, 1226, … (Require 5 * 16 bits = 80 bits => 10 bytes) 
Offsets: 15, 4, 17, 0, 10, … (Require 5*5 bits = 25 bits => 3 bytes + 1 (bit) = 4 bytes) 
Binary: 01111, 00100, 10001, 00000, 01010, … 
Packed:  10001111, 01000100, 10100000, 0 … 
Decimal: 143, 68, 160, 0 … 
Bitstream: (shown in opposite order) …0|10100000|01000100|10001111 
 
Minimum: 1216, Maximum: 1713 
Range: 497, In binary: 0000 0001 1111 0001 

Bits needed per compressed word: 9 
Data: 1231, 1216, 1301, 1700, 1529, … (Require 5 * 16 bits = 80 bits => 10 bytes) 
Offsets: 15, 0, 85, 484, 313, …(Need 5*9 bits = 45 bits => 5 bytes + 5(bits) = 6 bytes) 
Binary: 000001111, 000000000, 001010101, 111100100, 100111001, … 
Packed:  00001111, 00000000, 01010100, 00100001, 10011111, 10011 … 
Decimal: 15, 0, 84, 33, 159, 19 … 
Bitstream: (shown in opposite order) 

…10011|10011111|00100001|01010100|00000000|00001111 
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DeCompression for AIDA 
 

The algorithm used is “bit-packed minimum+offset”. 
 
The input data consists of a 16-bit word containing the number of bits each word has 
been packed into, followed by a second 16-bit word containing the smallest value in 
the output block, followed by the compressed data. The reconstructed data is in fixed 
and known length blocks of 16-bit words. 
 
The technique is to read successive n bits of data, where n is the packed length that 
was read from the start of the input stream. Each n-bit word represents an offset from 
the minimum value, also previously read from the input stream. Each output word is 
constructed by adding the offset to the minimum. 
 
Examples 
Bit length: 3, Minimum: 1216 
Bitstream following: (shown R to L) …0010000|10100101 
Packed: (shown L to R) 10100101, 0010000 … 
Decimal: 165, 16 … 
Binary: ((n = 3)-bit words) 101, 100, 010, 000, 001, … 
Offsets: 5, 4, 2, 0, 1, … 
Data: (1216 + offset) 1221, 1220, 1218, 1216, 1217, … 
 
Bit length: 5, Minimum: 1216 
Bitstream following: (shown R to L) …0|10100000|01000100|10001111 
Packed: (shown L to R) 10001111, 01000100, 10100000, 0 … 
Decimal: 143, 68, 160, 0 … 
Binary: ((n = 5)-bit words) 01111, 00100, 10001, 00000, 01010, … 
Offsets: 15, 4, 17, 0, 10, … 
Data: (1216 + offset) 1231, 1220, 1233, 1216, 1226, … 
 
Bit length: 9, Minimum: 1216 
Bitstream following: (shown R to L)
 …10011|10011111|00100001|01010100|00000000|00001111 
Packed: (L to R) 00001111, 00000000, 01010100, 00100001, 10011111, 10011 … 
Decimal: 15, 0, 84, 33, 159, 19 … 
Binary: ((n=9)-bits) 000001111, 000000000, 001010101, 111100100, 100111001, … 
Offsets: 15, 0, 85, 484, 313, … 
Data: (1216 + offset) 1231, 1216, 1301, 1700, 1529, … 
 
N.B. The flow chart below shows an implementation of this algorithm but is not 
optimised, i.e. there are faster ways of producing the correct output from an input 
stream. 
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