
Compression for AIDA

The algorithm used is “bit-packed minimum+offset”.

The input data is in fixed and known length blocks of 16-bit words. The output data
consists of a 16-bit word containing the number of bits each input word has been
packed into, followed by a second 16-bit word containing the smallest value in the
input block, followed by the compressed data.

The compression technique is to search for the minimum & maximum values in the
input block; the difference between them is the range. Each input word will be
expressed, on output, as an offset from the minimum. The range is the largest value
that will occur. Each of the offsets can be stored in a number of bits no greater than
that needed to store the range. During compression, each word offset is stored packed
next to the preceding offset. High order zero-bits beyond that needed to store the
range are not stored.

Examples
Minimum: 1216, Maximum: 1222
Range: 6, In binary: 0000 0000 0000 0110

Bits needed per compressed word: 3
Data: 1221, 1220, 1218, 1216, 1217, … (Require 5 * 16 bits = 80 bits => 10 bytes)
Offsets: 5, 4, 2, 0, 1, … (Require 5*3 bits = 15 bits => 1 bytes + 7 (bits) = 2 bytes)
Binary: 101, 100, 010, 000, 001, …
Packed: 10100101, 0010000 …
Decimal: 165, 16 …
Bitstream: (shown in opposite order) …0010000|10100101

Minimum: 1216, Maximum: 1234
Range: 18, In binary: 0000 0000 0001 0010

Bits needed per compressed word: 5
Data: 1231, 1220, 1233, 1216, 1226, … (Require 5 * 16 bits = 80 bits => 10 bytes)
Offsets: 15, 4, 17, 0, 10, … (Require 5*5 bits = 25 bits => 3 bytes + 1 (bit) = 4 bytes)
Binary: 01111, 00100, 10001, 00000, 01010, …
Packed: 10001111, 01000100, 10100000, 0 …
Decimal: 143, 68, 160, 0 …
Bitstream: (shown in opposite order) …0|10100000|01000100|10001111

Minimum: 1216, Maximum: 1713
Range: 497, In binary: 0000 0001 1111 0001

Bits needed per compressed word: 9
Data: 1231, 1216, 1301, 1700, 1529, … (Require 5 * 16 bits = 80 bits => 10 bytes)
Offsets: 15, 0, 85, 484, 313, …(Need 5*9 bits = 45 bits => 5 bytes + 5(bits) = 6 bytes)
Binary: 000001111, 000000000, 001010101, 111100100, 100111001, …
Packed: 00001111, 00000000, 01010100, 00100001, 10011111, 10011 …
Decimal: 15, 0, 84, 33, 159, 19 …
Bitstream: (shown in opposite order)

…10011|10011111|00100001|01010100|00000000|00001111

Simon Letts, STFC Daresbury Laboratory, August 2008

Simon Letts: August 2008

Compress1

Start

Find min & max values in block

Calculate range from min & max

Find minimum number of bits
needed to hold range

Output each word as offset from
min, packed

Stop

See flowchart
Compress2

See flowchart
Compress3

See flowcharts
Compress4/5

See flowchart
Compress2

Simon Letts: August 2008

Compress2

Yes

No

Yes

No

Start

Initialise Min & Max to 1st
item value in block

Iterate over
input block

Is this item
> Max?

Set Max = item

Is this item
< Min?

Set Min = item

Increment loop counter

Set Range = Max - Min

To Compress3

Yes

Yes

Loop Done

Simon Letts: August 2008

Compress3

Yes

No

From Compress2

Initialise number of bits
(NumBits) to 1

Iterate over
max possible
bits - 1 (15)

Shift Range 1 bit right

Value of
Range > 0?

(More 1-bits to
shift?)

Increment NumBits

Loop Done

To Compress4

Simon Letts: August 2008

Compress4

From Compress3

Output NumBits
(16 bits)

Increment output pointer (by
2 bytes)

Output Min value
(16 bits)

Increment output pointer (by
2 bytes)

Initialise output bit value to
1

Iterate over
input block

Calculate offset of item from
minimum

Output lowest
NumBits bits of
offset at current

bit position within
output word &
conditionally

increment output
pointer

Increment block loop
counter

Stop

Loop Done

Detailed in
Compress5

Offset = (item value) - Min

Simon Letts: August 2008

Compress5

Yes

No

Yes

No

Enter

Initialise output
byte to 0

Iterate over
LS NumBits of

Offset

Initialise input bit value to 1

Bit is set at
current input
bit position?

Set bit at current
output bit
position

Increment input bit position

Increment output bit position

Output bit
position > 8?

Re-initialise output bit value
to 1

Increment output pointer

Initialise output
byte to 0

Increment bit loop counter

Exit

(Offset &
input bit
value) != 0

output byte =
output byte |
output bit value

input bit value =
(input bit value)
shifted left 1 bit

output bit value =
(output bit value)
shifted left 1 bit

(output bit value &
0xff) == 0 ?

Loop Done

Simon Letts: August 2008

DeCompression for AIDA

The algorithm used is “bit-packed minimum+offset”.

The input data consists of a 16-bit word containing the number of bits each word has
been packed into, followed by a second 16-bit word containing the smallest value in
the output block, followed by the compressed data. The reconstructed data is in fixed
and known length blocks of 16-bit words.

The technique is to read successive n bits of data, where n is the packed length that
was read from the start of the input stream. Each n-bit word represents an offset from
the minimum value, also previously read from the input stream. Each output word is
constructed by adding the offset to the minimum.

Examples
Bit length: 3, Minimum: 1216
Bitstream following: (shown R to L) …0010000|10100101
Packed: (shown L to R) 10100101, 0010000 …
Decimal: 165, 16 …
Binary: ((n = 3)-bit words) 101, 100, 010, 000, 001, …
Offsets: 5, 4, 2, 0, 1, …
Data: (1216 + offset) 1221, 1220, 1218, 1216, 1217, …

Bit length: 5, Minimum: 1216
Bitstream following: (shown R to L) …0|10100000|01000100|10001111
Packed: (shown L to R) 10001111, 01000100, 10100000, 0 …
Decimal: 143, 68, 160, 0 …
Binary: ((n = 5)-bit words) 01111, 00100, 10001, 00000, 01010, …
Offsets: 15, 4, 17, 0, 10, …
Data: (1216 + offset) 1231, 1220, 1233, 1216, 1226, …

Bit length: 9, Minimum: 1216
Bitstream following: (shown R to L)
 …10011|10011111|00100001|01010100|00000000|00001111
Packed: (L to R) 00001111, 00000000, 01010100, 00100001, 10011111, 10011 …
Decimal: 15, 0, 84, 33, 159, 19 …
Binary: ((n=9)-bits) 000001111, 000000000, 001010101, 111100100, 100111001, …
Offsets: 15, 0, 85, 484, 313, …
Data: (1216 + offset) 1231, 1216, 1301, 1700, 1529, …

N.B. The flow chart below shows an implementation of this algorithm but is not
optimised, i.e. there are faster ways of producing the correct output from an input
stream.

Simon Letts, STFC Daresbury Laboratory, August 2008

Simon Letts: August 2008

Explode (Decompress)

No

Start

Input number of
bits used, NoBits

(16-bits)

Input minimum
value (16-bits)

Initialise input bit value to 1

Calculate compressed length
of block

Iterate over output
block, reading input

as bytes

Set offset = 0

Iterate over
next NoBits of

input

Set output bit value = 1

Bit set at
input bit
position?

Yes

Add output bit value to
offset

Stop

Block
loop done

Bit
loop done

BT

BL

Yes

No

Shift output bit value 1 bit
left

Increment input bit position

Input bit
position >

8?

Re-initialise input bit
value to 1

Increment input pointer

Increment bit loop counter

BT

BL

(input & input
bit value) != 0

offset = offset +
output bit value

(input bit value &
0xff) == 0 ?

input bit value =
(input bit value)
shifted left 1 bit

output bit value =
(output bit value)
shifted left 1 bit

Output =
minimum+offset

Increment block loop
counter

Simon Letts: August 2008

	CompressFlow.pdf
	CompressFlowIntro.pdf
	Compress1.pdf
	Sheet1

	Compress2.pdf
	Sheet1

	Compress3.pdf
	Sheet1

	Compress4.pdf
	Sheet1

	Compress5.pdf
	Sheet1

	DeCompressFlow.pdf
	DeCompressFlowIntro.pdf
	Explode.pdf
	Sheet1

